Affiliations:
John K. Dagsvik, Statistics Norway, Research Department;
Mariachiara Fortuna, freelance statistician, Turin;
Sigmund Hov Moen, Westerdals Oslo School of Arts, Communication and Technology.
Corresponding author:
John K. Dagsvik, E-mail: john.dagsvik@ssb.no
Mariachiara Fortuna, E-mail: mariachiara.fortuna@vanlog.it (reference for code and analysis)
| Weather station | \(H_c\) | \(H_w\) | \(SE(H_w)\) |
|---|---|---|---|
| Argentina, Buenos Aires | 0.785 | 0.713 | 0.016 |
| Australia, Adelaide | 0.696 | 0.662 | 0.016 |
| Australia, Alice Springs | 0.700 | 0.683 | 0.017 |
| Australia, Cap Otway | 0.803 | 0.744 | 0.016 |
| Austria, Kremsmunster | 0.655 | 0.651 | 0.016 |
| Austria, Vienna | 0.684 | 0.659 | 0.015 |
| Belgium, Uccle | 0.660 | 0.643 | 0.014 |
| Canada, Winnipeg | 0.654 | 0.660 | 0.016 |
| Croatia, Zagreb | 0.654 | 0.650 | 0.015 |
| Czech Republic, Prague | 0.684 | 0.670 | 0.012 |
| Denmark, Copenhagen | 0.755 | 0.758 | 0.013 |
| Denmark, Vestervig | 0.725 | 0.763 | 0.016 |
| Egypt, Alexandria | 0.773 | 0.798 | 0.018 |
| France, Nantes | 0.643 | 0.643 | 0.015 |
| France, Paris | 0.733 | 0.672 | 0.012 |
| Germany, Berlin | 0.664 | 0.662 | 0.012 |
| Germany, Hohenpeissenberg | 0.617 | 0.605 | 0.012 |
| Germany, Karlsruhe | 0.642 | 0.629 | 0.016 |
| Greece, Athens | 0.682 | 0.698 | 0.015 |
| Greenland, Illulisat | 0.738 | 0.725 | 0.016 |
| Greenland, Ivittuut | 0.782 | 0.751 | 0.020 |
| Hungary, Budapest | 0.627 | 0.645 | 0.012 |
| Iceland, Djupivogur | 0.762 | 0.736 | 0.016 |
| Iceland, Reykjavik | 0.731 | 0.711 | 0.016 |
| India, Agra | 0.731 | 0.753 | 0.019 |
| India, Allahabad | 0.699 | 0.694 | 0.017 |
| India, Bombay | 0.783 | 0.788 | 0.017 |
| India, Indore | 0.734 | 0.709 | 0.017 |
| India, Madras | 0.751 | 0.753 | 0.017 |
| India, Nagpur | 0.697 | 0.708 | 0.017 |
| Israel, Jerusalem | 0.685 | 0.699 | 0.016 |
| Italy, Bologna | 0.702 | 0.698 | 0.014 |
| Italy, Milan | 0.724 | 0.709 | 0.012 |
| Japan, Hiroshima | 0.731 | 0.733 | 0.017 |
| Japan, Nagasaki | 0.738 | 0.715 | 0.017 |
| Japan, Tokyo | 0.795 | 0.744 | 0.016 |
| Kazakhstan, Kazalinsk | 0.609 | 0.655 | 0.018 |
| Luxembourg, Luxembourg | 0.675 | 0.658 | 0.014 |
| New Zealand, Wellington | 0.774 | 0.752 | 0.017 |
| Norway, Andoya | 0.723 | 0.725 | 0.016 |
| Norway, Bergen | 0.678 | 0.687 | 0.015 |
| Norway, Bodo | 0.680 | 0.698 | 0.016 |
| Norway, Dombas | 0.633 | 0.664 | 0.015 |
| Norway, Karasjok | 0.655 | 0.679 | 0.016 |
| Norway, Mandal | 0.682 | 0.724 | 0.016 |
| Norway, Oksoy Lighthouse | 0.719 | 0.771 | 0.016 |
| Norway, Ona | 0.711 | 0.749 | 0.016 |
| Norway, Oslo | 0.693 | 0.724 | 0.014 |
| Norway, Roros | 0.667 | 0.695 | 0.016 |
| Norway, Tromso | 0.670 | 0.690 | 0.016 |
| Norway, Utsira | 0.735 | 0.768 | 0.016 |
| Norway, Vardo | 0.765 | 0.751 | 0.016 |
| Pakistan, Lahore | 0.649 | 0.693 | 0.016 |
| Portugal, Lisbon | 0.769 | 0.710 | 0.017 |
| Romania, Sulina | 0.653 | 0.699 | 0.017 |
| Russia, Archangelsk | 0.675 | 0.661 | 0.016 |
| Russia, Sort | 0.640 | 0.694 | 0.018 |
| Russia, St Petersburg | 0.697 | 0.696 | 0.017 |
| Spain, Gibraltar | 0.773 | 0.765 | 0.015 |
| Sweden, Bromma | 0.694 | 0.736 | 0.012 |
| Sweden, Stockholm | 0.681 | 0.721 | 0.012 |
| Sweden, Tullinge | 0.672 | 0.727 | 0.012 |
| Sweden, Uppsala | 0.690 | 0.718 | 0.011 |
| Switzerland, Basel | 0.625 | 0.622 | 0.012 |
| Switzerland, Geneva | 0.693 | 0.667 | 0.012 |
| UK, Aberdeen | 0.691 | 0.704 | 0.017 |
| UK, Belfast | 0.650 | 0.665 | 0.016 |
| UK, Cambridge | 0.678 | 0.673 | 0.016 |
| UK, Durham | 0.698 | 0.686 | 0.015 |
| UK, Edinbourg | 0.644 | 0.670 | 0.013 |
| UK, London | 0.721 | 0.686 | 0.015 |
| UK, Plymouth | 0.624 | 0.676 | 0.017 |
| USA, Atlanta | 0.632 | 0.641 | 0.016 |
| USA, Bismarck | 0.655 | 0.640 | 0.016 |
| USA, Boise | 0.654 | 0.656 | 0.016 |
| USA, Boston | 0.693 | 0.670 | 0.016 |
| USA, Chattanooga | 0.637 | 0.647 | 0.016 |
| USA, Cincinatti | 0.656 | 0.645 | 0.016 |
| USA, Columbus | 0.629 | 0.631 | 0.016 |
| USA, Concord | 0.687 | 0.662 | 0.016 |
| USA, Des Moines | 0.626 | 0.632 | 0.016 |
| USA, Detroit | 0.659 | 0.653 | 0.016 |
| USA, Dodge City | 0.626 | 0.611 | 0.016 |
| USA, Fargo | 0.656 | 0.655 | 0.016 |
| USA, Galveston | 0.662 | 0.688 | 0.017 |
| USA, Indianapolis | 0.611 | 0.622 | 0.016 |
| USA, Jacksonville | 0.608 | 0.651 | 0.016 |
| USA, Knoxville | 0.624 | 0.630 | 0.016 |
| USA, Las Vegas | 0.643 | 0.647 | 0.017 |
| USA, Madison | 0.641 | 0.647 | 0.016 |
| USA, Marquette | 0.688 | 0.686 | 0.017 |
| USA, Milwaukee | 0.689 | 0.676 | 0.016 |
| USA, Mobile | 0.617 | 0.651 | 0.016 |
| USA, Nashville | 0.581 | 0.603 | 0.016 |
| USA, New Orleans | 0.696 | 0.695 | 0.017 |
| USA, New York | 0.745 | 0.699 | 0.014 |
Due to the fact that the monthly time series are quite long, the estimates of the Hurst parameter are quite precise. From Table C1 we note that the difference between the characteristic function estimates and the Whittle estimates of the Hurst parameter are only significantly different in a few cases.
| Weather station | \(H_c\) | \(Q(H_c)\) | \(H_w\) | \(SE(H_w)\) | \(Q(H_w)\) |
|---|---|---|---|---|---|
| Argentina, Buenos Aires | 0.951 | 4.960 | 0.938 | 0.055 | -0.222 |
| Australia, Adelaide | 0.882 | 2.511 | 0.781 | 0.058 | 0.336 |
| Australia, Alice Springs | 0.647 | -0.040 | 0.708 | 0.058 | 0.062 |
| Australia, Cap Otway | 0.905 | 0.222 | 0.869 | 0.059 | 0.157 |
| Austria, Kremsmunster | 0.728 | -0.679 | 0.782 | 0.058 | 0.273 |
| Austria, Vienna | 0.811 | -0.527 | 0.806 | 0.055 | -0.270 |
| Belgium, Uccle | 0.740 | -0.086 | 0.739 | 0.050 | 0.011 |
| Canada, Winnipeg | 0.713 | 0.346 | 0.728 | 0.058 | 0.174 |
| Croatia, Zagreb | 0.723 | 0.888 | 0.780 | 0.055 | -0.144 |
| Czech Republic, Prague | 0.745 | 0.442 | 0.716 | 0.043 | 0.012 |
| Denmark, Copenhagen | 0.817 | 0.092 | 0.753 | 0.045 | 0.007 |
| Denmark, Vestervig | 0.699 | 0.093 | 0.733 | 0.056 | 0.008 |
| Egypt, Alexandria | 0.882 | 0.224 | 0.862 | 0.064 | 0.010 |
| France, Nantes | 0.738 | -0.494 | 0.720 | 0.052 | 0.120 |
| France, Paris | 0.873 | 0.574 | 0.802 | 0.042 | -0.010 |
| Germany, Berlin | 0.726 | -0.053 | 0.712 | 0.041 | -0.041 |
| Germany, Hohenpeissenberg | 0.701 | 1.053 | 0.684 | 0.043 | -0.338 |
| Germany, Karlsruhe | 0.728 | 0.209 | 0.819 | 0.059 | 0.172 |
| Greece, Athens | 0.754 | 0.863 | 0.788 | 0.054 | 0.094 |
| Greenland, Illulisat | 0.806 | 0.839 | 0.805 | 0.057 | 0.000 |
| Greenland, Ivittuut | 0.797 | -0.202 | 0.804 | 0.071 | -0.273 |
| Hungary, Budapest | 0.682 | 0.288 | 0.663 | 0.043 | -0.115 |
| Iceland, Djupivogur | 0.852 | 0.084 | 0.841 | 0.058 | 0.332 |
| Iceland, Reykjavik | 0.889 | 0.996 | 0.885 | 0.057 | 0.146 |
| India, Agra | 0.802 | -0.281 | 0.844 | 0.066 | 0.184 |
| India, Allahabad | 0.706 | -1.135 | 0.807 | 0.059 | -0.839 |
| India, Bombay | 0.793 | -0.072 | 0.887 | 0.059 | 0.087 |
| India, Indore | 0.820 | -0.303 | 0.899 | 0.059 | -0.534 |
| India, Madras | 0.775 | -0.511 | 0.906 | 0.059 | -0.328 |
| India, Nagpur | 0.610 | -0.424 | 0.727 | 0.058 | -0.158 |
| Israel, Jerusalem | 0.702 | 0.022 | 0.654 | 0.057 | -0.060 |
| Italy, Bologna | 0.819 | 0.602 | 0.845 | 0.048 | -0.723 |
| Italy, Milan | 0.851 | -1.014 | 0.826 | 0.043 | -0.281 |
| Japan, Hiroshima | 0.798 | -0.165 | 0.738 | 0.059 | -0.267 |
| Japan, Nagasaki | 0.823 | 0.026 | 0.761 | 0.058 | 0.014 |
| Japan, Tokyo | 0.926 | -0.235 | 0.851 | 0.058 | -0.086 |
| Kazakhstan, Kazalinsk | 0.611 | -0.250 | 0.563 | 0.061 | -0.216 |
| Luxembourg, Luxembourg | 0.815 | -1.068 | 0.825 | 0.051 | 1.062 |
| New Zealand, Wellington | 0.810 | -0.618 | 0.919 | 0.060 | -0.296 |
| Norway, Andoya | 0.773 | 0.049 | 0.761 | 0.055 | -0.013 |
| Norway, Bergen | 0.783 | -0.377 | 0.717 | 0.053 | 0.206 |
| Norway, Bodo | 0.700 | -0.289 | 0.682 | 0.054 | -0.130 |
| Norway, Dombas | 0.679 | 3.476 | 0.637 | 0.053 | 3.275 |
| Norway, Karasjok | 0.655 | -0.386 | 0.652 | 0.056 | 0.627 |
| Norway, Mandal | 0.620 | -0.499 | 0.625 | 0.054 | 0.368 |
| Norway, Oksoy Lighthouse | 0.666 | -0.126 | 0.672 | 0.055 | 0.156 |
| Norway, Ona | 0.674 | -0.139 | 0.702 | 0.056 | 0.030 |
| Norway, Oslo | 0.692 | 0.464 | 0.699 | 0.047 | -0.130 |
| Norway, Roros | 0.727 | -0.333 | 0.688 | 0.055 | -0.229 |
| Norway, Tromso | 0.616 | -0.318 | 0.641 | 0.054 | 0.005 |
| Norway, Utsira | 0.738 | -0.094 | 0.753 | 0.055 | -0.040 |
| Norway, Vardo | 0.724 | -0.053 | 0.770 | 0.054 | -0.017 |
| Pakistan, Lahore | 0.659 | 0.047 | 0.743 | 0.057 | 0.020 |
| Portugal, Lisbon | 0.933 | 0.211 | 0.931 | 0.060 | -0.221 |
| Romania, Sulina | 0.591 | 0.121 | 0.631 | 0.057 | -0.121 |
| Russia, Archangelsk | 0.707 | 1.187 | 0.746 | 0.058 | -0.369 |
| Russia, Sort | 0.594 | 0.722 | 0.581 | 0.062 | 0.431 |
| Russia, St Petersburg | 0.670 | -0.161 | 0.706 | 0.058 | 7.045 |
| Spain, Gibraltar | 0.787 | -0.075 | 0.855 | 0.056 | 0.283 |
| Sweden, Bromma | 0.688 | 0.202 | 0.690 | 0.041 | -0.043 |
| Sweden, Stockholm | 0.614 | 5.121 | 0.632 | 0.041 | -0.940 |
| Sweden, Tullinge | 0.624 | 1.523 | 0.622 | 0.041 | -0.312 |
| Sweden, Uppsala | 0.715 | 1.135 | 0.710 | 0.040 | -0.291 |
| Switzerland, Basel | 0.664 | 0.558 | 0.720 | 0.042 | -0.753 |
| Switzerland, Geneva | 0.845 | -0.537 | 0.818 | 0.042 | 0.563 |
| UK, Aberdeen | 0.771 | 0.268 | 0.767 | 0.058 | -0.245 |
| UK, Belfast | 0.707 | -0.576 | 0.727 | 0.058 | 0.252 |
| UK, Cambridge | 0.773 | -1.596 | 0.781 | 0.056 | 4.131 |
| UK, Durham | 0.771 | -0.656 | 0.761 | 0.052 | 3.554 |
| UK, Edinbourg | 0.605 | -1.430 | 0.626 | 0.045 | 2.282 |
| UK, London | 0.798 | -0.543 | 0.809 | 0.053 | 1.394 |
| UK, Plymouth | 0.559 | 0.268 | 0.671 | 0.058 | 1.633 |
| USA, Atlanta | 0.766 | 2.043 | 0.725 | 0.058 | 1.774 |
| USA, Bismarck | 0.749 | 1.135 | 0.761 | 0.058 | 0.631 |
| USA, Boise | 0.725 | -0.017 | 0.698 | 0.057 | -0.281 |
| USA, Boston | 0.728 | 0.389 | 0.724 | 0.058 | 0.541 |
| USA, Chattanooga | 0.744 | 0.715 | 0.695 | 0.057 | 0.684 |
| USA, Cincinatti | 0.758 | -0.108 | 0.718 | 0.058 | 0.685 |
| USA, Columbus | 0.705 | -1.449 | 0.702 | 0.057 | 0.248 |
| USA, Concord | 0.790 | 0.012 | 0.729 | 0.058 | -0.255 |
| USA, Des Moines | 0.621 | 0.042 | 0.623 | 0.056 | -0.247 |
| USA, Detroit | 0.707 | 1.846 | 0.663 | 0.057 | -1.948 |
| USA, Dodge City | 0.648 | 0.123 | 0.715 | 0.058 | -0.191 |
| USA, Fargo | 0.738 | 2.083 | 0.725 | 0.058 | 0.948 |
| USA, Galveston | 0.674 | -0.566 | 0.666 | 0.057 | -0.104 |
| USA, Indianapolis | 0.667 | 1.495 | 0.658 | 0.057 | -0.726 |
| USA, Jacksonville | 0.664 | 0.212 | 0.618 | 0.056 | -0.423 |
| USA, Knoxville | 0.744 | -0.773 | 0.680 | 0.057 | 0.267 |
| USA, Las Vegas | 0.707 | -0.310 | 0.694 | 0.060 | -0.100 |
| USA, Madison | 0.673 | -0.336 | 0.682 | 0.057 | -0.347 |
| USA, Marquette | 0.694 | -0.026 | 0.716 | 0.058 | -0.167 |
| USA, Milwaukee | 0.683 | -1.088 | 0.755 | 0.058 | -0.247 |
| USA, Mobile | 0.678 | 3.408 | 0.672 | 0.057 | 0.667 |
| USA, Nashville | 0.609 | -0.240 | 0.625 | 0.057 | 0.360 |
| USA, New Orleans | 0.861 | 4.034 | 0.812 | 0.058 | -0.570 |
| USA, New York | 0.907 | 4.772 | 0.843 | 0.049 | 2.002 |
From the results in Table C2 we note that the estimates of the Hurst parameter based on annual data are, on average, higher than the corresponding estimates based on monthly data. Furthermore, we see that data from 9 weather stations reject the FGN hypothesis when using the characteristic function estimate of the Hurst parameter whereas data from 6 weather stations reject the FGN when using the Whittle estimate of the Hurst parameter.
| Parameters and statistics | Value |
|---|---|
| \(\mu\) | -0.354 |
| \(\sigma\) | 0.220 |
| \(\mu_c\) | -0.354 |
| \(\sigma_c\) | 0.051 |
| \(H_c\) | 0.917 |
| \(H_w\) | 0.990 |
| \(SE(H_w)\) | 0.015 |
| \(Q(H_c)\) | -11.205 |
| \(Q(H_w)\) | 104.220 |
The results of Table C3 show that the FGN model is rejected for the Moberg data when the respective estimated Hurst parameters are used.
| H | Q(H) |
|---|---|
| 0.92 | -10.595 |
| 0.93 | -8.332 |
| 0.94 | -5.274 |
| 0.95 | -0.946 |
| 0.96 | 5.599 |
| 0.97 | 16.575 |
| 0.98 | 38.621 |
The results of Table C4 shows that the power of the Q test is high (conditional on the FGN model). In particular, when H = 0.95 then Q(H) \(\in\) (-1.96, 1.96) whereas when H equals 0.94 or 0.96 (or further away from 0.95) then Q(H) \(\notin\) (-1.96, 1.96) which means rejection of FGN.
| Test statistic | Test result | Test criterion | |
|---|---|---|---|
| Significance level: 0.05 | 3.397 | no rejection | 5.494 |
| Significance level: 0.1 | 3.430 | no rejection | 5.350 |
| Weather station | Test statistic | Test result | Test criterion |
|---|---|---|---|
| Argentina,Buenos Aires | 3.086 | no rejection | 5.865 |
| Australia,Adelaide | 3.282 | no rejection | 5.878 |
| Australia,Alice Springs | 3.947 | no rejection | 5.802 |
| Australia,Cap Otway | 3.719 | no rejection | 5.788 |
| Austria,Kremsmunster | 3.229 | no rejection | 5.742 |
| Austria,Vienna | 2.722 | no rejection | 5.747 |
| Belgium,Uccle | 3.905 | no rejection | 5.941 |
| Canada,Winnipeg | 3.593 | no rejection | 5.628 |
| Croatia,Zagreb | 4.149 | no rejection | 5.813 |
| Czech Republic,Prague | 4.066 | no rejection | 5.971 |
| Denmark,Copenhagen | 3.912 | no rejection | 5.957 |
| Denmark,Vestervig | 3.926 | no rejection | 5.864 |
| Egypt,Alexandria | 5.144 | no rejection | 5.493 |
| France,Nantes | 3.805 | no rejection | 5.855 |
| France,Paris | 4.139 | no rejection | 5.952 |
| Germany,Berlin | 4.309 | no rejection | 5.976 |
| Germany,Hohenpeissenberg | 3.038 | no rejection | 5.987 |
| Germany,Karlsruhe | 2.600 | no rejection | 5.717 |
| Greece,Athens | 3.658 | no rejection | 5.581 |
| Greenland,Illulisat | 3.716 | no rejection | 5.865 |
| Greenland,Ivittuut | 3.042 | no rejection | 5.740 |
| Hungary,Budapest | 3.673 | no rejection | 5.941 |
| Iceland,Djupivogur | 6.377 | rejection | 5.849 |
| Iceland,Reykjavik | 3.259 | no rejection | 5.717 |
| India,Agra | 4.363 | no rejection | 5.828 |
| India,Allahabad | 2.495 | no rejection | 5.822 |
| India,Bombay | 4.361 | no rejection | 5.878 |
| India,Indore | 2.763 | no rejection | 5.892 |
| India,Madras | 4.714 | no rejection | 5.718 |
| India,Nagpur | 3.669 | no rejection | 5.869 |
| Israel,Jerusalem | 3.665 | no rejection | 5.821 |
| Italy,Bologna | 4.363 | no rejection | 5.907 |
| Italy,Milan | 4.002 | no rejection | 5.935 |
| Japan,Hiroshima | 2.940 | no rejection | 5.333 |
| Japan,Nagasaki | 2.960 | no rejection | 5.637 |
| Japan,Tokyo | 2.550 | no rejection | 5.569 |
| Kazakhstan,Kazalinsk | 3.289 | no rejection | 5.751 |
| Luxembourg,Luxembourg | 3.368 | no rejection | 5.902 |
| New Zealand,Wellington | 3.390 | no rejection | 5.606 |
| Norway,Andoya | 4.493 | no rejection | 5.914 |
| Norway,Bergen | 2.312 | no rejection | 5.861 |
| Norway,Bodo | 4.287 | no rejection | 5.896 |
| Norway,Dombas | 5.485 | no rejection | 5.867 |
| Norway,Karasjok | 3.920 | no rejection | 5.821 |
| Norway,Mandal | 3.929 | no rejection | 5.924 |
| Norway,Oksoy Lighthouse | 4.187 | no rejection | 5.873 |
| Norway,Ona | 3.902 | no rejection | 5.894 |
| Norway,Oslo | 3.286 | no rejection | 5.928 |
| Norway,Roros | 3.352 | no rejection | 5.832 |
| Norway,Tromso | 3.834 | no rejection | 5.871 |
| Norway,Utsira | 2.863 | no rejection | 5.868 |
| Norway,Vardo | 2.742 | no rejection | 5.867 |
| Pakistan,Lahore | 2.830 | no rejection | 5.889 |
| Portugal,Lisbon | 4.938 | no rejection | 5.784 |
| Romania,Sulina | 2.957 | no rejection | 5.396 |
| Russia,Archangelsk | 3.720 | no rejection | 5.683 |
| Russia,Sort | 3.222 | no rejection | 5.437 |
| Russia,St Petersburg | 3.695 | no rejection | 5.852 |
| Spain,Gibraltar | 5.704 | no rejection | 5.867 |
| Sweden,Bromma | 3.244 | no rejection | 5.963 |
| Sweden,Stockholm | 3.083 | no rejection | 5.955 |
| Sweden,Tullinge | 3.508 | no rejection | 5.950 |
| Sweden,Uppsala | 3.182 | no rejection | 5.920 |
| Switzerland,Basel | 4.411 | no rejection | 5.961 |
| Switzerland,Geneva | 4.266 | no rejection | 5.955 |
| UK,Aberdeen | 2.114 | no rejection | 5.818 |
| UK,Belfast | 2.766 | no rejection | 5.846 |
| UK,Cambridge | 2.815 | no rejection | 5.863 |
| UK,Durham | 2.867 | no rejection | 5.930 |
| UK,Edinbourg | 3.406 | no rejection | 5.914 |
| UK,London | 4.037 | no rejection | 5.909 |
| UK,Plymouth | 4.379 | no rejection | 5.852 |
| USA,Atlanta | 3.985 | no rejection | 5.897 |
| USA,Bismarck | 3.510 | no rejection | 5.635 |
| USA,Boise | 3.839 | no rejection | 5.567 |
| USA,Boston | 3.373 | no rejection | 5.828 |
| USA,Chattanooga | 3.835 | no rejection | 5.863 |
| USA,Cincinatti | 4.886 | no rejection | 5.860 |
| USA,Columbus | 3.413 | no rejection | 5.831 |
| USA,Concord | 2.573 | no rejection | 5.911 |
| USA,Des Moines | 2.397 | no rejection | 5.799 |
| USA,Detroit | 3.542 | no rejection | 5.841 |
| USA,Dodge City | 2.791 | no rejection | 5.799 |
| USA,Fargo | 2.176 | no rejection | 5.584 |
| USA,Galveston | 2.841 | no rejection | 5.879 |
| USA,Indianapolis | 3.422 | no rejection | 5.825 |
| USA,Jacksonville | 3.743 | no rejection | 5.800 |
| USA,Knoxville | 2.886 | no rejection | 5.866 |
| USA,Las Vegas | 2.441 | no rejection | 5.746 |
| USA,Madison | 2.792 | no rejection | 5.842 |
| USA,Marquette | 3.198 | no rejection | 5.843 |
| USA,Milwaukee | 2.621 | no rejection | 5.819 |
| USA,Mobile | 2.741 | no rejection | 5.887 |
| USA,Nashville | 3.836 | no rejection | 5.858 |
| USA,New Orleans | 2.708 | no rejection | 5.859 |
| USA,New York | 4.448 | no rejection | 5.617 |
From Table C6 we note that only in one case (Djupivogur, Iceland) do the data reject the stationarity hypothesis.
| Weather station | Test statistic | Test result | Test criterion |
|---|---|---|---|
| Argentina,Buenos Aires | 3.086 | no rejection | 5.865 |
| Australia,Adelaide | 3.282 | no rejection | 5.878 |
| Australia,Alice Springs | 3.947 | no rejection | 5.802 |
| Australia,Cap Otway | 3.719 | no rejection | 5.788 |
| Austria,Kremsmunster | 3.229 | no rejection | 5.742 |
| Austria,Vienna | 2.722 | no rejection | 5.747 |
| Belgium,Uccle | 3.905 | no rejection | 5.941 |
| Canada,Winnipeg | 3.593 | no rejection | 5.628 |
| Croatia,Zagreb | 4.149 | no rejection | 5.813 |
| Czech Republic,Prague | 4.066 | no rejection | 5.971 |
| Denmark,Copenhagen | 3.912 | no rejection | 5.957 |
| Denmark,Vestervig | 3.926 | no rejection | 5.864 |
| Egypt,Alexandria | 5.144 | no rejection | 5.493 |
| France,Nantes | 3.805 | no rejection | 5.855 |
| France,Paris | 4.139 | no rejection | 5.952 |
| Germany,Berlin | 4.309 | no rejection | 5.976 |
| Germany,Hohenpeissenberg | 3.038 | no rejection | 5.987 |
| Germany,Karlsruhe | 2.600 | no rejection | 5.717 |
| Greece,Athens | 3.658 | no rejection | 5.581 |
| Greenland,Illulisat | 3.716 | no rejection | 5.865 |
| Greenland,Ivittuut | 3.042 | no rejection | 5.740 |
| Hungary,Budapest | 3.673 | no rejection | 5.941 |
| Iceland,Djupivogur | 6.377 | rejection | 5.849 |
| Iceland,Reykjavik | 3.259 | no rejection | 5.717 |
| India,Agra | 4.363 | no rejection | 5.828 |
| India,Allahabad | 2.495 | no rejection | 5.822 |
| India,Bombay | 4.361 | no rejection | 5.878 |
| India,Indore | 2.763 | no rejection | 5.892 |
| India,Madras | 4.714 | no rejection | 5.718 |
| India,Nagpur | 3.669 | no rejection | 5.869 |
| Israel,Jerusalem | 3.665 | no rejection | 5.821 |
| Italy,Bologna | 4.363 | no rejection | 5.907 |
| Italy,Milan | 4.002 | no rejection | 5.935 |
| Japan,Hiroshima | 2.940 | no rejection | 5.333 |
| Japan,Nagasaki | 2.960 | no rejection | 5.637 |
| Japan,Tokyo | 2.550 | no rejection | 5.569 |
| Kazakhstan,Kazalinsk | 3.289 | no rejection | 5.751 |
| Luxembourg,Luxembourg | 3.368 | no rejection | 5.902 |
| New Zealand,Wellington | 3.390 | no rejection | 5.606 |
| Norway,Andoya | 4.493 | no rejection | 5.914 |
| Norway,Bergen | 2.312 | no rejection | 5.861 |
| Norway,Bodo | 4.287 | no rejection | 5.896 |
| Norway,Dombas | 5.485 | no rejection | 5.867 |
| Norway,Karasjok | 3.920 | no rejection | 5.821 |
| Norway,Mandal | 3.929 | no rejection | 5.924 |
| Norway,Oksoy Lighthouse | 4.187 | no rejection | 5.873 |
| Norway,Ona | 3.902 | no rejection | 5.894 |
| Norway,Oslo | 3.286 | no rejection | 5.928 |
| Norway,Roros | 3.352 | no rejection | 5.832 |
| Norway,Tromso | 3.834 | no rejection | 5.871 |
| Norway,Utsira | 2.863 | no rejection | 5.868 |
| Norway,Vardo | 2.742 | no rejection | 5.867 |
| Pakistan,Lahore | 2.830 | no rejection | 5.889 |
| Portugal,Lisbon | 4.938 | no rejection | 5.784 |
| Romania,Sulina | 2.957 | no rejection | 5.396 |
| Russia,Archangelsk | 3.720 | no rejection | 5.683 |
| Russia,Sort | 3.222 | no rejection | 5.437 |
| Russia,St Petersburg | 3.695 | no rejection | 5.852 |
| Spain,Gibraltar | 5.704 | no rejection | 5.867 |
| Sweden,Bromma | 3.244 | no rejection | 5.963 |
| Sweden,Stockholm | 3.083 | no rejection | 5.955 |
| Sweden,Tullinge | 3.508 | no rejection | 5.950 |
| Sweden,Uppsala | 3.182 | no rejection | 5.920 |
| Switzerland,Basel | 4.411 | no rejection | 5.961 |
| Switzerland,Geneva | 4.266 | no rejection | 5.955 |
| UK,Aberdeen | 2.114 | no rejection | 5.818 |
| UK,Belfast | 2.766 | no rejection | 5.846 |
| UK,Cambridge | 2.815 | no rejection | 5.863 |
| UK,Durham | 2.867 | no rejection | 5.930 |
| UK,Edinbourg | 3.406 | no rejection | 5.914 |
| UK,London | 4.037 | no rejection | 5.909 |
| UK,Plymouth | 4.379 | no rejection | 5.852 |
| USA,Atlanta | 3.985 | no rejection | 5.897 |
| USA,Bismarck | 3.510 | no rejection | 5.635 |
| USA,Boise | 3.839 | no rejection | 5.567 |
| USA,Boston | 3.373 | no rejection | 5.828 |
| USA,Chattanooga | 3.835 | no rejection | 5.863 |
| USA,Cincinatti | 4.886 | no rejection | 5.860 |
| USA,Columbus | 3.413 | no rejection | 5.831 |
| USA,Concord | 2.573 | no rejection | 5.911 |
| USA,Des Moines | 2.397 | no rejection | 5.799 |
| USA,Detroit | 3.542 | no rejection | 5.841 |
| USA,Dodge City | 2.791 | no rejection | 5.799 |
| USA,Fargo | 2.176 | no rejection | 5.584 |
| USA,Galveston | 2.841 | no rejection | 5.879 |
| USA,Indianapolis | 3.422 | no rejection | 5.825 |
| USA,Jacksonville | 3.743 | no rejection | 5.800 |
| USA,Knoxville | 2.886 | no rejection | 5.866 |
| USA,Las Vegas | 2.441 | no rejection | 5.746 |
| USA,Madison | 2.792 | no rejection | 5.842 |
| USA,Marquette | 3.198 | no rejection | 5.843 |
| USA,Milwaukee | 2.621 | no rejection | 5.819 |
| USA,Mobile | 2.741 | no rejection | 5.887 |
| USA,Nashville | 3.836 | no rejection | 5.858 |
| USA,New Orleans | 2.708 | no rejection | 5.859 |
| USA,New York | 4.448 | no rejection | 5.617 |
Table C7 shows that stationarity (based on the default option of Cho’s test) is rejected for data from 14 weather stations when monthly time series are used.
| Weather station | \(H_{wav}\) | \(Q(H_{wav})\) |
|---|---|---|
| Argentina, Buenos Aires | 0.622 | -5.299 |
| Australia, Adelaide | 0.622 | -1.906 |
| Australia, Alice Springs | 0.643 | -1.490 |
| Australia, Cap Otway | 0.696 | -4.644 |
| Austria, Kremsmunster | 0.602 | -1.606 |
| Austria, Vienna | 0.610 | -2.172 |
| Belgium, Uccle | 0.595 | -1.695 |
| Canada, Winnipeg | 0.615 | -1.349 |
| Croatia, Zagreb | 0.609 | -1.449 |
| Czech Republic, Prague | 0.625 | -2.273 |
| Denmark, Copenhagen | 0.694 | -4.464 |
| Denmark, Vestervig | 0.699 | -2.392 |
| Egypt, Alexandria | 0.740 | -3.498 |
| France, Nantes | 0.602 | -1.312 |
| France, Paris | 0.603 | -4.348 |
| Germany, Berlin | 0.621 | -1.907 |
| Germany, Hohenpeissenberg | 0.567 | -1.001 |
| Germany, Karlsruhe | 0.569 | -1.383 |
| Greece, Athens | 0.657 | -1.622 |
| Greenland, Illulisat | 0.664 | -2.943 |
| Greenland, Ivittuut | 0.695 | -2.970 |
| Hungary, Budapest | 0.606 | -1.260 |
| Iceland, Djupivogur | 0.668 | -4.356 |
| Iceland, Reykjavik | 0.644 | -3.351 |
| India, Agra | 0.697 | -2.155 |
| India, Allahabad | 0.644 | -1.767 |
| India, Bombay | 0.715 | -4.660 |
| India, Indore | 0.642 | -2.954 |
| India, Madras | 0.688 | -3.555 |
| India, Nagpur | 0.665 | -1.588 |
| Israel, Jerusalem | 0.652 | -1.589 |
| Italy, Bologna | 0.642 | -3.037 |
| Italy, Milan | 0.642 | -4.870 |
| Japan, Hiroshima | 0.665 | -2.826 |
| Japan, Nagasaki | 0.661 | -2.904 |
| Japan, Tokyo | 0.664 | -5.614 |
| Kazakhstan, Kazalinsk | 0.619 | -0.592 |
| Luxembourg, Luxembourg | 0.606 | -2.034 |
| New Zealand, Wellington | 0.703 | -3.066 |
| Norway, Andoya | 0.669 | -2.437 |
| Norway, Bergen | 0.635 | -1.900 |
| Norway, Bodo | 0.651 | -1.500 |
| Norway, Dombas | 0.618 | -1.215 |
| Norway, Karasjok | 0.634 | -1.152 |
| Norway, Mandal | 0.680 | -0.963 |
| Norway, Oksoy Lighthouse | 0.713 | -1.528 |
| Norway, Ona | 0.680 | -2.199 |
| Norway, Oslo | 0.671 | -2.014 |
| Norway, Roros | 0.641 | -1.650 |
| Norway, Tromso | 0.648 | -1.162 |
| Norway, Utsira | 0.703 | -2.522 |
| Norway, Vardo | 0.694 | -3.376 |
| Pakistan, Lahore | 0.649 | -1.011 |
| Portugal, Lisbon | 0.627 | -4.469 |
| Romania, Sulina | 0.658 | -0.876 |
| Russia, Archangelsk | 0.610 | -1.618 |
| Russia, Sort | 0.658 | -0.460 |
| Russia, St Petersburg | 0.643 | -1.817 |
| Spain, Gibraltar | 0.707 | -4.289 |
| Sweden, Bromma | 0.687 | -2.110 |
| Sweden, Stockholm | 0.673 | -1.558 |
| Sweden, Tullinge | 0.679 | -1.350 |
| Sweden, Uppsala | 0.665 | -2.545 |
| Switzerland, Basel | 0.585 | -1.229 |
| Switzerland, Geneva | 0.606 | -3.239 |
| UK, Aberdeen | 0.654 | -1.924 |
| UK, Belfast | 0.621 | -1.307 |
| UK, Cambridge | 0.616 | -2.031 |
| UK, Durham | 0.625 | -2.584 |
| UK, Edinbourg | 0.633 | -0.943 |
| UK, London | 0.614 | -3.479 |
| UK, Plymouth | 0.644 | -0.635 |
| USA, Atlanta | 0.607 | -0.909 |
| USA, Bismarck | 0.598 | -1.234 |
| USA, Boise | 0.616 | -1.300 |
| USA, Boston | 0.617 | -1.920 |
| USA, Chattanooga | 0.617 | -0.855 |
| USA, Cincinatti | 0.614 | -1.090 |
| USA, Columbus | 0.601 | -0.866 |
| USA, Concord | 0.608 | -1.973 |
| USA, Des Moines | 0.604 | -0.734 |
| USA, Detroit | 0.614 | -1.196 |
| USA, Dodge City | 0.582 | -0.776 |
| USA, Fargo | 0.608 | -1.420 |
| USA, Galveston | 0.646 | -1.334 |
| USA, Indianapolis | 0.594 | -0.666 |
| USA, Jacksonville | 0.621 | -0.723 |
| USA, Knoxville | 0.592 | -0.926 |
| USA, Las Vegas | 0.616 | -0.933 |
| USA, Madison | 0.609 | -1.009 |
| USA, Marquette | 0.630 | -2.118 |
| USA, Milwaukee | 0.625 | -1.860 |
| USA, Mobile | 0.624 | -0.638 |
| USA, Nashville | 0.589 | -0.382 |
| USA, New Orleans | 0.644 | -2.132 |
| USA, New York | 0.629 | -4.211 |
Wavelet Lifting vs Whittle estimates of H, with 95% confidence bands
